3 resultados para species identification

em Duke University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression in a variety of organisms, including insects, vertebrates, and plants. miRNAs play important roles in cell development and differentiation as well as in the cellular response to stress and infection. To date, there are limited reports of miRNA identification in mosquitoes, insects that act as essential vectors for the transmission of many human pathogens, including flaviviruses. West Nile virus (WNV) and dengue virus, members of the Flaviviridae family, are primarily transmitted by Aedes and Culex mosquitoes. Using high-throughput deep sequencing, we examined the miRNA repertoire in Ae. albopictus cells and Cx. quinquefasciatus mosquitoes. RESULTS: We identified a total of 65 miRNAs in the Ae. albopictus C7/10 cell line and 77 miRNAs in Cx. quinquefasciatus mosquitoes, the majority of which are conserved in other insects such as Drosophila melanogaster and Anopheles gambiae. The most highly expressed miRNA in both mosquito species was miR-184, a miRNA conserved from insects to vertebrates. Several previously reported Anopheles miRNAs, including miR-1890 and miR-1891, were also found in Culex and Aedes, and appear to be restricted to mosquitoes. We identified seven novel miRNAs, arising from nine different precursors, in C7/10 cells and Cx. quinquefasciatus mosquitoes, two of which have predicted orthologs in An. gambiae. Several of these novel miRNAs reside within a ~350 nt long cluster present in both Aedes and Culex. miRNA expression was confirmed by primer extension analysis. To determine whether flavivirus infection affects miRNA expression, we infected female Culex mosquitoes with WNV. Two miRNAs, miR-92 and miR-989, showed significant changes in expression levels following WNV infection. CONCLUSIONS: Aedes and Culex mosquitoes are important flavivirus vectors. Recent advances in both mosquito genomics and high-throughput sequencing technologies enabled us to interrogate the miRNA profile in these two species. Here, we provide evidence for over 60 conserved and seven novel mosquito miRNAs, expanding upon our current understanding of insect miRNAs. Undoubtedly, some of the miRNAs identified will have roles not only in mosquito development, but also in mediating viral infection in the mosquito host.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ongoing Cryptococcus gattii outbreaks in the Western United States and Canada illustrate the impact of environmental reservoirs and both clonal and recombining propagation in driving emergence and expansion of microbial pathogens. C. gattii comprises four distinct molecular types: VGI, VGII, VGIII, and VGIV, with no evidence of nuclear genetic exchange, indicating these represent distinct species. C. gattii VGII isolates are causing the Pacific Northwest outbreak, whereas VGIII isolates frequently infect HIV/AIDS patients in Southern California. VGI, VGII, and VGIII have been isolated from patients and animals in the Western US, suggesting these molecular types occur in the environment. However, only two environmental isolates of C. gattii have ever been reported from California: CBS7750 (VGII) and WM161 (VGIII). The incongruence of frequent clinical presence and uncommon environmental isolation suggests an unknown C. gattii reservoir in California. Here we report frequent isolation of C. gattii VGIII MATα and MATa isolates and infrequent isolation of VGI MATα from environmental sources in Southern California. VGIII isolates were obtained from soil debris associated with tree species not previously reported as hosts from sites near residences of infected patients. These isolates are fertile under laboratory conditions, produce abundant spores, and are part of both locally and more distantly recombining populations. MLST and whole genome sequence analysis provide compelling evidence that these environmental isolates are the source of human infections. Isolates displayed wide-ranging virulence in macrophage and animal models. When clinical and environmental isolates with indistinguishable MLST profiles were compared, environmental isolates were less virulent. Taken together, our studies reveal an environmental source and risk of C. gattii to HIV/AIDS patients with implications for the >1,000,000 cryptococcal infections occurring annually for which the causative isolate is rarely assigned species status. Thus, the C. gattii global health burden could be more substantial than currently appreciated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dopamine is an important central nervous system transmitter that functions through two classes of receptors (D1 and D2) to influence a diverse range of biological processes in vertebrates. With roles in regulating neural activity, behavior, and gene expression, there has been great interest in understanding the function and evolution dopamine and its receptors. In this study, we use a combination of sequence analyses, microsynteny analyses, and phylogenetic relationships to identify and characterize both the D1 (DRD1A, DRD1B, DRD1C, and DRD1E) and D2 (DRD2, DRD3, and DRD4) dopamine receptor gene families in 43 recently sequenced bird genomes representing the major ordinal lineages across the avian family tree. We show that the common ancestor of all birds possessed at least seven D1 and D2 receptors, followed by subsequent independent losses in some lineages of modern birds. Through comparisons with other vertebrate and invertebrate species we show that two of the D1 receptors, DRD1A and DRD1B, and two of the D2 receptors, DRD2 and DRD3, originated from a whole genome duplication event early in the vertebrate lineage, providing the first conclusive evidence of the origin of these highly conserved receptors. Our findings provide insight into the evolutionary development of an important modulatory component of the central nervous system in vertebrates, and will help further unravel the complex evolutionary and functional relationships among dopamine receptors.